Several key problems in external gear pump
a. I-coefficient yokuhlangana (izinga) e yokuhlangana kwemishini kumele kube ngaphezulu kuka-1, okusho ukuthi, okungenani ama-pair amabili ezinyo kumele ahlangane ngasikhathi sinye. Ngakho-ke, ingxenye ye-oyela ibanjwe phakathi kwe-cavity evaliwe eyakhiwe ngama-pair amabili ezinyo, okuthiwa futhi indawo ye-oyela eboshiwe. Indawo ye-oyela eboshiwe ayixhunywanga nezikhala ze-oyela eziphezulu neziphansi ze-pump, futhi iyashintsha ngokujikeleza kwemishini, njengoba kuboniswe kuMfanekiso C. Kusuka kumfanekiso C (a) kuya kumfanekiso C (b), ivolumu ye-oyela eboshiwe V iyancipha kancane kancane; kusuka kumfanekiso C (b) kuya kumfanekiso C (c), ivolumu ye-oyela eboshiwe V iyanda kancane kancane. Ukuncipha kwevolumu ye-oyela eboshiwe kuzokwenza ukuthi i-oyela eboshiwe icindezelwe futhi iphume ngaphezulu kwegap, okuzokwenza hhayi kuphela ukuthi kube nok pressure ephezulu, kube nomthwalo owengeziwe ophindaphindiwe ku-shaft ye-pump, kodwa futhi kube nokushisa kwe-oyela; lapho ivolumu ye-oyela eboshiwe ishintsha ivela encane iye enkulu, kuzokwakheka i-vacuum yendawo kanye ne-cavitation ngenxa yokungabi ne-oyela yokwengeza, okudala i-cavitation kanye nokudlidliza okuqinile nokukhala. UMfanekiso B ubonisa umjikelezo wokushintsha kwevolumu ye-oyela eboshiwe. Inkinga ye-oyela eboshiwe ayithinti kuphela ikhwalithi yokusebenza ye-gear pump,
It kan ook die dienslewe verkort.
Ithe common measure to solve the problem of trapped oil is to set unloading grooves (grooves) corresponding to the trapped oil area on the inner surface of the front and rear covers of the pump. In addition to the double rectangular structure symmetrically arranged relative to the gear centerline (Fig. C), there are also the double circular unloading groove symmetrically arranged relative to the gear centerline [Fig. D (a)] and double oblique cutting unloading groove [Fig. C (b)] and the thin strip unloading groove symmetrically arranged relative to the gear centerline [Fig. D (c)]. The characteristics are different, but the unloading principle is the same, that is, on the premise of ensuring that the high and low pressure cavities are not connected with each other, the trapped oil area is connected with the high pressure cavity (oil pressure port) when the volume is reduced, and with the low pressure cavity (oil suction port) when the volume is increased. For example, the double dotted line in Figure C shows a symmetrical double rectangular unloading groove. When the volume of the trapped oil area decreases, it is connected with the oil pressure chamber through the unloading groove on the left [figure C (a)], and when the volume increases, it is connected with the oil suction chamber through the unloading groove on the right [figure C (c)].
为了确保更好的卸载效果,避免油吸入和压力区域的碰撞,卸载槽的尺寸(如矩形卸载槽的宽度和深度或圆形卸载槽的直径和深度)以及两个卸载槽之间的间距应适当。一般来说,齿轮泵的两个卸载槽通常偏向油吸入区域,并且不对称打开。如图e所示,两个槽之间的间距a(最小闭合死体积)必须确保油吸入腔和油压力腔在任何时候都不能相互碰撞。对于模数为m的标准渐开线齿轮(分割圆的压力角为a),a = 2.78m。当卸载槽不对称时,必须确保油压力腔侧的B = 0.8m,槽宽Cmin > 2.5m,槽深h ≥ 0.8m。
b. Iphutha elikhulu le-pump ye-gear enezinga eliphezulu ukuthi kunezindlela eziningi zokuvuza, futhi akulula ukusombulula ngezinyathelo zokufaka. Kukhona izindlela ezintathu eziyinhloko zokuvuza ku-pump ye-gear yangaphandle: ukungena kwe-axial phakathi kwezindawo ezimbili ze-gear kanye nekhava yokugcina; ukungena kwe-radial phakathi komgodi wangaphakathi wesikhwama kanye nomjikelezo wangaphandle we-gear; ukungena kokuhlangana kwezinsika ezimbili. Ukungena kwe-axial kunezithiyo ezinkulu kakhulu ekuvuzweni, ngoba indawo yokuvuza ibanzi futhi indlela yokuvuza ifushane. Ukuvuza kungabamba u-75% ~ 80% wesamba sokuvuza. Uma ukungena kwe-axial kukhulu, ukuvuza kuzoba kukhulu, okuzokwenza ukusebenza kwevolumu kube phansi kakhulu; uma ukungena kukhulu kakhulu, ukulahleka kokuhlangana kwemishini phakathi kobuso be-gear kanye nekhava ye-pump kuzokwanda, okuzokwehlisa ukusebenza kwemishini ye-pump.
Le solusiyo ku le leakage problem yikukhetha i-clearance efanelekile yokulawula: ngokujwayelekile, i-axial clearance ilawulwa ku-0.03 ~ 0.04mm; i-radial clearance ilawulwa ku-0.13 ~ 0.16mm. Emaphumpini e-gear aphezulu naphakathi, indlela yokuzitholela ngokuzenzakalelayo ye-axial clearance ivamise ukusetshenziswa ukuze kuncishiswe uku leakage futhi kuthuthukiswe ukusebenza kwe-volumetric kwepump. Ukuzitholela ngokuzenzakalelayo kwe-axial clearance kuvamise ukwengeza i-floating shaft sleeve (i-floating side plate) noma i-elastic side plate phakathi kwe-cover yangaphambili neyemuva ye-pump ukuze icindezele ubuso be-gear ngaphansi kokusebenza kwengcindezi ye-hydraulic, ukuze kuncishiswe uku leakage ngaphezulu kobuso ku-pump futhi kufezwe inhloso yokwandisa ingcindezi. I-floating shaft sleeve ingashintshwa nganoma yisiphi isikhathi ngemuva kokugqoka.
Die Prinzip der automatischen Kompensation des axialen Spiels ist in Abbildung F dargestellt. Die beiden ineinandergreifenden Zahnräder werden von Gleitlagern oder Wälzlagern in den Vorder- und Hinterachshülsen 4 und 2 unterstützt, die axial im Gehäuse 1 schwimmen können. Das Drucköl wird aus der Druckölkammer zum äußeren Ende der Welle geführt und wirkt auf die Fläche A1 mit einer bestimmten Form und Größe. Die resultierende Kraft des hydraulischen Drucks ist F1 = a1pg, die die Welle gegen die Stirnfläche des Zahnrads drückt, und ihre Größe ist proportional zum Ausgangsarbeitsdruck PG der Pumpe.
Die hydraulische Druck auf der Endfläche des Zahnrads wirkt auf die innere Endfläche des Wellenmantels und erzeugt einen Rückstoß auf der äquivalenten Fläche A2, der ebenfalls proportional zum Arbeitsdruck ist, das heißt, FF = a2pm (PM ist der durchschnittliche Druck, der auf A2 wirkt).
Wanneer die pomp aangeskakel word, is die drijvende as-sleeve naby die tandwiel-eindvlak onder die werking van die elastiese element (rubber-seëlring of veer) elasties om die seël te verseker.
Ukuze kuqinisekiswe ukuthi i-sleeve ye-shaft ingazenzakalelayo ibambe endaweni yokugcina ye-gear ngaphansi kwezimo ezahlukene zokusebenza futhi ikwazi ukuzilungisa ngemva kokugqokwa, amandla okucindezela FY (= ft) kufanele alungiswe +F1) kube mkhulu kune-reverse thrust FF, kodwa akuvunyelwe ukuthi FY ibe mkhulu kakhulu kune FF. Uhlaka lokucindezela lokucindezela ku-reverse thrust FY / FF luncike ku-[PV] inani le-sleeve ye-shaft kanye ne-gear material kanye ne-mechanical efficiency, okusho ukuthi, ukuze kuncishiswe ukulahleka kokuhlangana, inani le-remaining pressing force (FY FF) akufanele libe mkhulu kakhulu, ukuze kuqinisekiswe ukuthi i-oil film efanele ingakhiqizwa phakathi kwe-sleeve ye-shaft ne-gear, okwenza kube lula ukuthuthukisa i-volumetric efficiency kanye ne-mechanical efficiency. Jikelele
Fy/Ff=1.0~1.2 (2-1)
Ngaphezu kwalokho, kubalulekile ukuqinisekisa ukuthi imigqa yokusebenza yokucindezela kanye nokuphonsa emuva kuhambisana, kungenjalo kuzokwakheka umjikelezo, okuzoholela ekutheni i-shaft sleeve igobe futhi kukhuphule uku leak.
c. Iphroblemu ye-radial force kanye nezixazululo zayo lapho ipompo yegear isebenza, amandla e-radial F asebenza ebharingi le-pompo yegear akhiwe ngamandla e-radial FP adalwe ingcindezi yamanzi edlula emjikelezweni wegear kanye namandla e-radial ft adalwe ukuhlangana kwegear, njengoba kuboniswe kuMfanekiso G.
When the gear pump works, in the radial clearance between the gear and the inner hole of the shell, the liquid pressure distribution from the oil suction chamber to the oil pressure chamber gradually increases step by step, and the approximate distribution curve of the liquid pressure is shown in Fig. G. The radial force FP produced by the liquid pressure on the driving gear and driven gear is exactly the same, and its direction is vertical and downward to the oil suction chamber. The radial force ft generated by gear meshing on driving gear and driven gear is approximately equal, but the direction is different. According to the radial force FP generated by the liquid pressure around the gear and the radial force ft generated by the gear meshing, the approximate calculation formula of the resultant force F1 of the radial force on the driving gear and the resultant force F2 of the radial force on the driven gear can be obtained
F1=0.75△pBDe (2-2)
F2=0.85△pBDe (2-3)
Where △ P -- pressure difference between inlet and outlet of gear pump;
B -- tooth width of gear;
De -- diameter of addendum circle of gear.
Ngokuqinisekile, amandla aphumayo F2 we-gear ephethwe kukhulu kune-F1 ye-gear eqhuba. Ngakho-ke, uma izincazelo zamabheringi kwi-wheel eqhuba kanye ne-wheel ephethwe zifana, amabheringi kwi-wheel ephethwe aguga ngokushesha. Ukuze kwenziwe isikhathi sokusebenza kwamabheringi amabili sifane noma sisondele, iphampu ye-oyili ingaphendulwa ohlangothini olunamandla amancane, ukuze kwenziwe F2 ~ F1.
Ngoba amandla e-radial awalingani, futhi uma ingcindezi yokusebenza iphakeme, amandla e-radial angalingani azoba mkhulu. Uma lokhu kuqhubeka, umgibeli wezinsimbi uzoshintsha, futhi indawo yokuthola uwoyela ye-shell izoshekwa yizinsimbi. Ngasikhathi sinye, ukugqoka kwe-bearing kuzosheshiswa, futhi impilo yokusebenza ye-pump izoncishiswa. Kukhona izindlela ezimbili ezivamile zokunciphisa amandla e-radial angalingani.
Method 1: reasonable selection of gear modulus m and tooth width b (B / M = 6-10 for low pressure gear pump and B / M = 3-6 for medium and high pressure gear pump) can reduce radial force without reducing volumetric efficiency.
Method 2: change the pressure distribution along the circumference, such as reducing the size of the pressure oil port of the pump, so that the pressure oil only acts on one tooth to two teeth, or setting oil groove (balance groove) on the cover plate or around the shaft sleeve to reduce the radial force. As shown in Fig. h, the balance grooves 1 and 2 on the cover plate are connected with the low pressure chamber and the high pressure chamber respectively to generate a hydraulic radial force corresponding to the oil suction chamber and the oil pressure chamber to balance the radial force.